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An advanced model for intragranular bubble diffusivity in irradiated UO2 fuel is developed. Three various
(surface, volume and gas-phase) mechanisms for the gas-filled bubbles diffusivity are reconsidered. It is
shown that the bubble mobility by the volume diffusion mechanism can be strongly enhanced under irra-
diation conditions. Influence of the two-phase interface kinetics at a bubble surface on the volume diffu-
sion, evaporation/condensation and surface migration mechanisms that can strongly suppress diffusivity
of small nanometre bubbles, is additionally studied using a non-linear adsorption law derived for the
van-der-Waals gas in the bubbles. The improved model is implemented in the MFPR code and validated
against measurements of the small bubbles mobility.
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1. Introduction

The motion of a bubble through a solid essentially requires the
transfer of atoms from the leading surface to the trailing surface.
Three routes are available to the atoms: they can diffuse around
the surface of the bubble (surface mechanism), or through the solid
near the bubble (volume mechanism), or via the vapour phase
within the bubble (gas-phase mechanism). The bubble mobility
is described by the bubble diffusion coefficient which depends on
the bubble radius Rb. This dependence is different for the various
diffusion mechanisms [1,2]. The bubble mobility in UO2 is largest
for the surface diffusion mechanism (at least for bubbles with
Rb 6 10 lm) and is inversely proportional to R�4

b , whereas a slower
dependence on the bubble radius (/ R�3

b ) is typical for the two
other mechanisms.

The effect of the internal gas pressure in restricting bubble
movement can be very considerable. In the work on helium-filled
cavities in nickel [3] it was shown that the gas pressure in small
cavities with radius <2.5 nm reduced their mobility to such an ex-
tent that it was effectively zero.

For the gas bubbles in UO2 Baker’s data [4] show that small
intragranular fission gas bubbles (average diameter �2 nm),
formed during the irradiation were virtually immobile on subse-
quent annealing at temperatures <1500 �C. With the growth of a
bubble radius from 2 to �10 nm, the bubble diffusivity increases,
in contradiction with the standard theoretical predictions.

In order to explain Baker’s observations, Mikhlin [5] proposed
that a factor which can dramatically affect the surface diffusion
mechanism is the presence of a dense gas within the bubble. At
the bubble surface a U adsorbed atom (adatom) may not be able
ll rights reserved.

: +7 495 958 0040.
).
to jump into a neighbouring atomic site because such a jump is
prevented by adatom interaction with gas atoms [5]. As a result,
the net rate of surface diffusion is reduced.

However, in this approach the two other mechanisms (volume
and gas phase) of bubble migration become rate controlling steps
for small nanometre bubbles and thus do not allow strong reduc-
tion of the total diffusivity (in contradiction with Baker’s observa-
tions). Therefore, additional reasons for reduction of the total
bubble diffusivity should be searched.

Such reasons can be apparently associated with faceting of
small bubbles observed in the same tests [4]. Indeed, the small
intragranular bubble morphology in uranium dioxide irradiated
at T < 1800 �C was confirmed as octahedron (with faces parallel
to {111} with truncation on the {100} planes at the corners),
and this was assumed by Baker as a major cause of their immobil-
ity. Moreover, noticeable bubble movement has been observed
only at annealing temperatures >1700 �C for bubbles of diameter
5–20 nm. At these temperatures the bubbles were spherical.

Earlier Willertz and Shewmon [6] found that faceted helium
bubbles in gold diffuse a factor 10�4–10�5 slower than theoreti-
cally possible from the unrestrained diffusion of surface atoms.
On this base, Willertz and Shewmon [6] and Beere [7] have as-
sumed that for faceted bubbles, bubble migration may be limited
by the rate at which new steps are nucleated on the facets. It is also
known that relocation of steps rather than their nucleation on a
crystallographic surface might be a rate controlling process of the
surface migration [8]. In both the cases the surface kinetics con-
trolled by the rate at which deposition and solution of atoms occur
at the two-phase interface [8] becomes the rate determining step
of faceted bubble migration.

In the current paper, the influence of the interface kinetics on
the bubble diffusivity mechanisms will be further studied. A spe-
cial attention will be paid to the effect of the gas pressure in
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restricting small bubbles movement. This will allow explanation of
further suppression (in comparison with Mikhlin’s mechanism) of
the diffusivity of small intragranular bubbles.

In addition, an improved consideration of bubble mobility
under irradiation conditions will be presented in the next Section.
It is important to note that the formulas for the bubble diffusivities
were derived by Shewmon [1] and Nichols [2] for equilibrium con-
ditions. Under irradiation conditions so called a-thermal effects
dependent on fission rate might be important. For instance, the
effective uranium self-diffusion coefficient may considerably
increase under irradiation in UO2 crystals [9]. Naturally, this can
result in the enhancement of the bubble diffusivity. Most pro-
nouncedly this effect can be demonstrated for the bubble volume
diffusion mechanism which is directly associated with uranium
self-diffusion in the crystal bulk.
2. Bubble diffusivity by volume diffusion mechanism under
irradiation conditions

In order to calculate bubble mobility under irradiation condi-
tions, the standard procedure for calculation of bubble mobility
in thermally equilibrium crystals (e.g. [10]) should be generalized
by additional consideration of non-equilibrium concentration of
point defects (vacancies and interstitials).

The components of the stress tensor induced on the bubble
surface by an external force~F exerted on the bubble in the isotropic
crystal take the form in the spherical system of coordinates (r, h, u)
[10]

rrrðhÞ ¼ �
3F

4pR2
b

cos h; rrhðhÞ ¼ rruðhÞ ¼ 0 ðr ¼ RbÞ; ð1Þ

where ~n is the normal to the bubble surface vector, h is the angle
between the vectors ~n and~F, Rb is the bubble radius. These stresses
induce a force completely compensating the external force:

~F 0 ¼
Z

rrr cos hdS�
~F
F
¼ �~F:

Under conditions of thermodynamic equilibrium on the bubble
surface, the chemical potentials of point defects (vacancies and
interstitials) lv,i connected with their concentrations cv,i at temper-
ature T by the relationship lv,i = lv,i0 + kTlncv,i, obey the boundary
conditions on this surface

lvðRb; hÞ ¼ lv0 þ xrnn ¼ lv0 þ xrrrðRb; hÞ; ð2Þ
liðRb; hÞ ¼ li0 � xrrrðRb; hÞ; ð3Þ

where rnn are the normal stresses at the bubble surface, x is the
atomic volume of uranium atoms (in the approximation
x � jxvj � jxij, see Appendix A), lv0 and li0 are the equilibrium
chemical potentials (normally zero) of vacancies and interstitials,
respectively, in the absence of stresses.

Far from the bubble the chemical potentials are determined by
the irradiation induced values:

lv;ið1Þ ¼ �lv;i: ð4Þ

In the steady-state approximation the chemical potentials obey the
Laplace-type equations:

Dlv;ið~rÞ ¼ 0: ð5Þ

Solution of Eq. (5) with the boundary conditions (Eqs. (1)–(4)) has
the form:

lvð~rÞ ¼ �lv � ð�lv � lv0Þ
Rb

r
� 3x

4p

~F �~r
r3 ; ð6Þ

lið~rÞ ¼ �li � ð�li � li0Þ
Rb

r
þ 3x

4p

~F �~r
r3 : ð7Þ
The point defect fluxes are determined by the chemical potential
gradients, in accordance with relationships:

~Iv ¼ �Mv
~rlv ¼ �

Dvcv

xkT
~rlv; ð8Þ

~Ii ¼ �Mi
~rli ¼ �

Dici

xkT
~rli; ð9Þ

where Mv,i are the kinetic coefficients connected with the
diffusivities Dv,i of vacancies and interstitials by the relationship
Dv;i ¼ Mv;ixkT=cv;i.

Substitution of Eqs. (6) and (7) in Eqs. (8) and (9) yields:

~Iv ¼ �
Dvcv

xkT
3

4p
�
~Fx
r3 þ

~F �~r
� �

~rx

r5

0@ 1Aþ �lv � lv0ð ÞRb~r
r3

24 35; ð10Þ

~Ii ¼ �
Dici

xkT
3

4p

~Fx
r3 �

~F �~r
� �

~rx

r5

0@ 1Aþ ð�li � li0Þ
Rb~r
r3

24 35: ð11Þ

Correspondingly, the induced atomic flux is equal to

~Ia ¼ �~Iv þ~Ii

¼ ðDvcv þ DiciÞ
kT

3
4p

�
~F
r3 þ

ð~F �~rÞ~r
r5

 !" #
� Dvð�cv � cðeqÞ

v Þ � Di�ci
� � Rb~r

xr3 :

ð12Þ

Migration velocity of a segment of the bubble surface ~v0ðRb; hÞ can
be represented as the sum of the term ~v corresponding to the bub-
ble relocation velocity (as a whole) and of the term _Rb~n correspond-
ing to the variation of the bubble radius [10]

~v0ðRb; hÞ ¼~vþ _Rb~n: ð13Þ

This velocity obeys the geometrical condition:

~v0ðRb; hÞ �~nðRb; hÞ ¼ x~IaðRb; hÞ �~nðRb; hÞ: ð14Þ

Substituting Eq. (12) in Eq. (14) and comparing with Eq. (13), one
obtains:

_Rb ¼ �½Dvð�cv � cv0Þ � Di�ci�
1
Rh
; ð15Þ

~v ¼ 3x
2p
ðDvcv þ DiciÞ

kT

~F

R3
b

¼ 3x
2p

eDU

kT

~F

R3
b

; ð16Þ

where eDU ¼ Dvcv þ Dici is the effective self-diffusion coefficient of
uranium atoms (see Appendix A).

It is straightforward to show that in the more general approach,
jxv,ij6¼ x, with the corrected boundary conditions Eqs. (2) and (3)
(as explained in Appendix A), the effective self-diffusion coefficient
introduced in Eq. (16) takes the form eDU ¼ cvDvcv þ ciDici, in corre-
spondence with Eq. (A.9).

Therefore, for the bubble mobility that obeys the relationship
~v ¼ ub

~F, one obtains:

ub ¼
3x

2pkT

eDU

R3
b

: ð17Þ

In accordance with the Einstein equation Db = kTub, the bubble dif-
fusivity is proportional to its mobility and thus can be deduced from
Eq. (17) as

DðvolÞ
b ¼ 3x

2p

eDU

R3
b

: ð18Þ

Under irradiation conditions the effective self-diffusion coefficient
consists of thermal (Arrhenius type) and a-thermal (fission rate
dependent) parts [9]eDU ¼ Dð0ÞU expð�EU=TÞ þ AG; ð19Þ
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where Dð0ÞU ¼ 2� 10�4 m2=s, EU = 64200 K, A � 1.2 � 10�39 m5 and
G is the fission rate.

Correspondingly, for irradiated crystal Eq. (19) should be substi-
tuted in Eq. (18). This determines the enhanced bubble diffusivity
by volume diffusion mechanism under irradiation conditions.

Simultaneously, Eq. (15) for the bubbles growth rate should be
additionally modified taking into account irradiation induced
re-solution of gas atoms from bubbles.
3. Influence of the interface kinetics on bubble diffusivity

As explained in Section 1, faceting had pronounced effect in
restricting bubble motion in UO2 crystals.

Qualitatively the observations of faceted bubbles can be ex-
plained as suppression by adsorbed gas atoms of so called ‘rough-
ening’ transition (from smooth (faceted) to rough surface) on UO2

crystal faces, when gas adsorption coverage is close to 1. The smal-
ler is the bubble, the higher is the gas pressure in the bubble and
the closer is gas adsorption to complete coverage; therefore, the
transition for small bubbles might be strongly suppressed (i.e.
shifted to higher temperatures), in agreement with the above pre-
sented Baker’s observations [4] that only small bubbles (�2 nm)
had faceted surface (and probably for this reason were immobile,
as explained below).

As explained in Section 1, the rate of movement of a bubble
with a smooth (faceted) surface may be determined by the rate
at which deposition and solution of uranium atoms occur at the
two-phase interface. This rate of deposition/solution per unit area
can be presented in the general form:

W ¼ Knðls � leqÞ
n
; ð20Þ

where Kn is the kinetic (‘reaction’) constant, ls and leq are the inter-
face and equilibrium chemical potentials of uranium atoms, respec-
tively. It is customary to take n equal to 1 or 2 [8], however, as
proposed in [1], also a larger positive number n can be used to
approximate the case in which the cavity are crystallographic and
the rate of deposition/solution is determined by the rate of nucle-
ation or growth of atomic steps in the cavity surface.

Under such conditions the bubble diffusivity becomes propor-
tional to the reaction constant Kn and obeys a more slow depen-
dence on bubble radius Rb, as shown in [1]

Db / KnRn�3
b : ð21Þ

This slow dependence on Rb results in a noticeable suppression of
the mobility for small bubbles (in comparison with the bulk diffu-
sion mechanism which provides Db / R�3

b ). However, an additional
effect can be apparently connected with suppression of Kn for small
bubbles with Rb � 1 nm.

Indeed, in such small bubbles with the surface tension c �
1 J/m2 the gas pressure is extremely high, p = 2c/Rb > 1 GPa, and
for this reason, the surface coverage h of gas atoms adsorbed on
the internal bubble surface should be very high, e.g., following

the Langmuir adsorption law, h ¼ kadp
1þkadp! 1. However, this sim-

plest formulation of the adsorption law is valid only for the ideal
gas (and at low coverage). For small bubbles with high pressure
a new expression for the adsorption isotherm should be derived.

3.1. Non-linear adsorption isotherm

In small bubbles with Rb 6 5 nm gas obeys the non-ideal (e.g.
van-der-Waals) equation of state: p(Vb � Nb B) = NbkT, where Nb

is the number of gas atoms, Vb is the bubble volume and
B � 8.5 � 10�29 m3/atom is the van-der-Waals constant for Xe gas.

In this case the chemical potential of gas atoms takes the form:
lg ¼ lð0Þg þ kT ln pþ Bp, whereas the chemical potential of adsorbed
gas atoms is lad ¼ lð0Þad þ kT lnðh=ð1� hÞÞ, where 0 6 h 6 1 is the
surface coverage of adsorbed monolayer. This simple expression
for lad is valid in both limits of h ? 0 and h ? 1, when the two-
dimensional lattice gas of adatoms (in the case h ? 0) or of their
vacancies (in the case h ? 1) can be considered as ideal (generally
with different values lð0Þad ðTÞ and ~lð0Þad ðTÞ in the two limits, respec-
tively). In the current consideration the second case, h ? 1, is of
interest.

In the thermodynamic equilibrium between gas and adsorbed
atoms lad = lg, therefore, in this case the dependence of the surface
coverage on pressure becomes steep and non-linear

h ¼ kadp expðBp=kTÞ
1þ kadp expðBp=kTÞ ; ð22Þ

where kad ¼ exp½ðlð0Þg � ~lð0Þad Þ=kT� is the unknown adsorption
constant.

It is clear that under high-coverage condition, h ? 1, deposition/
solution of uranium atoms on the surface will be blocked by
adsorbed gas atoms, resulting in a strong suppression of the kinetic
constant Kn. In the microscopic consideration of adsorption/
desorption processes it is conventionally assumed that Kn is pro-
portional to the surface area unoccupied with gas atoms, Kn ¼
kðnÞh ð1� hÞ, where kðnÞh is the second unknown constant of the model,
therefore, in the case of the above-derived non-linear adsorption
law for small bubbles (with high gas pressure p ¼ 2c=Rb), Eq.
(22), one obtains:

Kn �
kðnÞh

1þ kadð2c=RbÞ expð2cB=RbkTÞ
� ðkðnÞh =2ckadÞRb expð�2cB=RbkTÞ: ð23Þ

Therefore, the bubble diffusivity, Eq. (21), can be strongly sup-
pressed for small intragranular bubbles with Rb �1 nm owing to ex-
tremely small value of the exponent, exp(�2cB/Rb kT), which attains
�10�4 at T � 1273 K.

3.2. Bubble diffusivity by volume diffusion mechanism

In order to adequately implement this effect of the bubble
mobility suppression, one should self-consistently consider the
problem of the bulk self-diffusion in the matrix along with the
two-phase interface kinetics at the bubble surface. For the first or-
der kinetics (n = 1 in Eq. (20)), the calculations presented in the
Appendix B yield for the bubble diffusivity:

DðvolÞ
b ¼ 3x

4pR3
b

K1xRb � 2eDU

K1xRb þ ð2eDU=kTÞ
: ð24Þ

Generalization to the higher order kinetics, n > 1, results in

DðvolÞ
b ¼ 3x

4pR3
b

KnxRn
b � 2eDU

KnxRn
b þ ð2eDU=kTÞ

; ð25Þ

which is correctly reduced to the known relationships in the two
limiting cases:

DðvolÞ
b ! 3eDUx

2pR3
b

, when KnxRn
b � eDU=2kT (the volume diffusion

mechanism),
and
DðvolÞ

b ! 3Knx2

4pR3�n
b

kT, when KnxRn
b 	 eDU=2kT (the interface kinetics

mechanism).
Substituting Eq. (23) in Eq. (25), one finally obtains:

DðvolÞ
b ¼ 3x

4pR3
b

ðxkðnÞh =2ckadÞ expð�2cB=RbkTÞRnþ1
b � 2eDU

ðxkðnÞh =2ckadÞ expð�2cB=RbkTÞRnþ1
b þ ð2eDU=kTÞ

: ð26Þ

Therefore, for small bubbles the two-phase interface kinetics
becomes the rate limiting step in the bubble diffusivity:
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DðvolÞ
b ! 3x2kT

4pR2�n
b

ðkðnÞh =2ckadÞ expð�2cB=RbkTÞ; ð27Þ

which tends to 0 when Rb ? 0.

3.3. Bubble diffusivity by vaporisation/condensation mechanism

Vaporisation/condensation of UO2 in the gas-phase provides the
interface kinetic limitation to the gas-phase mechanism of bubble
diffusivity. This contribution can be represented in the form
[11]

DðvapÞ
b ¼ 3x2

4ps2kNb
PUO2ðgÞ

ffiffiffiffiffiffiffiffiffiffi
pR

8mT

r
; ð28Þ

where Nb is the number of gas atoms in a bubble, k is the Boltzmann
constant, R is the universal gas constant, s = 3.0 � 10�10 m and pps2

is the effective cross-section for elastic collisions between Xe atoms
and UO2 molecules, the mass m is defined by m = m1m2/(m1 + m2),
where m1 and m2 are the molar masses of Xe and UO2. PUO2ðgÞ is
the equilibrium partial pressure of UO2 gas given by

PUO2ðgÞ ¼ P0 expð�DHvap=TÞ; ð29Þ

where DHvap � 71.682 � 103 K is the heat of vaporisation. For small
nanometre bubbles Nb is roughly proportional to the bubble vol-
ume, therefore, DðvapÞ

b / R�3
b .

In a small bubble with high pressure the evaporation/condensa-
tion of U atoms will take place from the surface areas unoccupied
with gaseous adatoms, therefore, Eq. (28) should be multiplied by
the factor (1 � h). In the case of the non-linear adsorption law, Eq.
(22), for small bubbles (with high gas pressure p = 2c/Rb) one
obtains:

DðvapÞ
b � 3X2

4ps2kNb
PUO2ðgÞ

ffiffiffiffiffiffiffiffiffiffi
pR

8mT

r
1

1þ ð2ckad=RbÞ expð2cB=RbkTÞ ; ð30Þ

which tends to 0 when Rb ? 0 as

DðvapÞ
b � 3X2

4ps2kNb

ffiffiffiffiffiffiffiffiffiffi
pR

8mT

r
PUO2ðgÞ

Rb

2ckad
exp �2cB=RbkTð Þ: ð30aÞ
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Fig. 1. Volume bubble diffusivity as a function of bubble radius at different tem-
peratures calculated by different models: the standard formulation and the modi-
fied model for the irradiation-enhanced bubble diffusivity with consideration of the
interface kinetic limitation.
3.4. Bubble diffusivity by surface diffusion mechanism

As mentioned in Section 1, in accordance with Mikhlin’s model
[5] a U adatom may not be able to jump into a neighbouring atomic
site at the bubble surface because such a jump is prevented by ada-
tom interaction with gas atoms.

Under assumption that a U adatom would not diffuse unless a
certain volume V0 � 1.5 � 10�27 m3 surrounding the adatom (so
called adatom interaction zone) was free of gas atoms, the net rate
of surface diffusion is reduced by a factor ð1� V0=VbÞNb :

DðsurfÞ
b ¼ Ds

3x4=3

4pR4
b

1� V0

Vb

� �Nb

� Ds
3x4=3

4pR4
b

exp � V0Pb

kT þ BPb

� �
; ð31Þ

where Pb = 2c/Rb is the bubble pressure, Vb ¼ 4pR3
b=3 is the bubble

volume, B is the van-der-Waals constant, Ds is the surface self-dif-
fusion coefficient, evaluated in [12] as Ds = 50 � exp (�450000/RT)
m2/s, with 1200 �C < T < 1800 �C and R in J mol�1 K�1.

This approach was criticised in [13], since there is no intrinsic
reason why a gas atom in an adatom interaction zone should pre-
vent the adatom from moving, but it has been shown to give re-
sults which compare quite favourably with experiments.

An alternative justification for the surface diffusion reduction
can be found taking into consideration that atomic jumps into a
neighbouring atomic site at the bubble surface can be prevented
by occupation of this site by an adsorbed gas atom. Consideration
of this mechanism can be carried out by application of the non-lin-
ear adsorption law to gas atoms on the bubble surface, similarly to
consideration in the previous sections.

Indeed, in this case the U adatom jump frequency on the equi-
librium gas bubble surface is less than its jump frequency c0 on the
free surface, cg(r) = c0w(r), where is the probability that there is a
free surface site in the neighbourhood non-occupied with gas
atoms, i.e. eventually this results in renormalization of the bubble
diffusivity by the same factor (1 � h), which can be calculated
using the non-linear adsorption law for non-ideal gases, Eq. (22):

DðsurfÞ
b ¼ Ds

3x4=3

4pR4
b

1
1þ ð2ckad=RbÞ expð2cB=RbkTÞ ; ð32Þ

which tends to 0 when Rb ? 0 as

DðsurfÞ
b � Ds

3x4=3

8pckadR3
b

expð�2cB=RbkTÞ: ð32aÞ
4. Model implementation in the MFPR code and validation

New formulations for the bubble volume diffusivity, Eq. (26),
and for the vaporization/condensation mechanism, Eq. (30), have
been implemented in the MFPR code [14,15] in the form:

DðvolÞ
b ¼ 2~DUx

Vb
1þ 2~DU

kTx
1

kðnÞh Rn
b

2ckad

Rb
exp 2cB=RbkTð Þ

 !�1

; ð33Þ

DðvapÞ
b � 3X2

4ps2kNb
PUO2ðgÞ

ffiffiffiffiffiffiffiffiffiffi
pR

8mT

r
1

1þ ð2ckad=RbÞ expð2cB=RbkTÞ ; ð34Þ

where Vb is the bubble volume, Nb is the number of gas atoms in the
bubble, eDU is the effective self-diffusion coefficient of uranium
atoms, Eq. (19); the constants kðnÞh and kad are the model parameters,
determined below by fitting calculations to the available data on
small bubbles diffusivity as 1045 (N m3 s)�1 and 10�4 m2/N,
respectively.

Comparison of the standard volume diffusivity of bubbles
DðvolÞ

b ¼ 2DUx=Vb, which includes only the thermal part of the ura-
nium self-diffusion coefficient DU ¼ Dð0ÞU expð�EU=TÞ and thus is
valid only for non-irradiation conditions, with the modified one
expressed by Eqs. (33) and (19), is presented in Fig. 1. One can
see that for bubbles with Rb > 2 nm the modified value of the
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bubble volume diffusivity calculated under irradiation conditions
(with the typical fission rate �1019 m�3 s�1) practically does not
depend on temperature at T 6 1400 K and noticeably exceeds the
standard value (especially at low temperatures). At higher temper-
atures T P 1600 K the thermal part of the uranium self-diffusion
coefficient exceeds the a-thermal part and the modified volume
diffusivity practically coincides with the standard one. Consider-
ation of the interface kinetic limitation in the new model provides
considerable suppression of the volume diffusivity for small bub-
bles with Rb 6 2 nm.

Similarly, modification of the vaporization/condensation model
taking into account suppression by gas atoms adsorbed on the bub-
ble surface, Eq. (34), diminishes the bubble diffusivity by this
mechanism for small bubbles, Fig. 2.

The surface diffusion mechanism was considered in two formu-
lations: the standard Mikhlin’s model, Eq. (31), and the modified
model, Eq. (32), as presented in Fig. 3.
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Fig. 2. Vaporization/condensation bubble diffusivity as a function of bubble radius
at different temperatures calculated with and without consideration of gas
adsorption.
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Fig. 3. Surface bubble diffusivity under irradiation conditions as a function of bu-
bble radius at different temperatures calculated by different models: the standard
Mikhlin’s formulation, Eq. (31), and the modified model, Eq. (32).
Superposition of the diffusion mechanisms allows calculation of
the total bubble diffusivity, Fig. 4. In the case of the standard Mikh-
lin’s formulation for the surface diffusion mechanism, Fig. 4(a),
results can be well fitted to Baker’s [4] and Cornell’s [16] data,
however, are inconsistent with Gulden’s data [17], as shown in
Fig. 5. In the case of the modified formulation Eq. (32), Fig. 4(b),
coincidence is not so good with Baker’s and Cornell’s data, how-
ever, the calculation results are in much better qualitative agree-
ment with Gulden’s measurements (and are still in the range of
discrepancy between the three data sets), Fig. 5.

It is important to note from Figs. 1–3 that at temperatures
below 1200 K under irradiation conditions with typical fission
rates (�1019 m�3 s�1) the irradiation-enhanced volume diffusivity
becomes higher than the bubble diffusivity by the surface mecha-
nism and thus determines the diffusivity of intragranular bubbles.
This is important conclusion for analysis of bubbles coalescence
and UO2 fuel swelling under normal operation conditions, espe-
cially at the fuel pellets periphery where low temperature condi-
tions are sustained.
1 10 100 1000
Bubble Radius (10-9 m)

1x10-30

1x10-28

1x10-26

1x10-24

1x10-22

1x10-20

1x10-18

1x10-16

B
u

b
b

le
 D

iff
u

si
vi

ty
(m

2
 s

-1
)

Standard
Modified

1000 K

1200 K

1400 K

1600 K

1800 K

1 10 100 1000
Bubble Radius (10-9 m)

1x10-30

1x10-28

1x10-26

1x10-24

1x10-22

1x10-20

1x10-18

1x10-16

B
u

b
b

le
 D

iff
u

si
vi

ty
 (

m
2
 s

-1
)

Standard
Modified

1000 K

1200 K

1400 K

1600 K

1800 K

a

b

Fig. 4. Total bubble diffusivity as a function of bubble radius at different temper-
atures calculated with and without consideration of the interface kinetics; (a) using
Mikhlin’s formulation for the surface diffusion mechanism; (b) using modified fo-
rmulation, Eq. (32).
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Fig. 5. Total bubble diffusivity as a function of bubble radius at 1773 K experi-
mentally measured and calculated without (dashed line 1) and with consideration
of the interface kinetics; for the latter case two options for the surface diffusion
mechanism are presented: Mikhlin’s formulation, Eq. (31) (dashed-dotted line 2)
and modified formulation, Eq. (32) (solid line 3).
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5. Conclusions

The advanced model for intragranular bubble diffusivity in irra-
diated UO2 fuel was developed. Three various mechanisms (sur-
face, volume and gas-phase) for the gas-filled bubble diffusivity
were considered.

It was shown that the bubble mobility by the volume diffusion
mechanism can be strongly enhanced under irradiation conditions,
in comparison with the standard consideration valid for equilib-
rium conditions. For instance, at relatively low temperatures
61200 K and typical fission rates (�1019 m�3 s�1) the volume dif-
fusion mechanism becomes the largest one and thus determines
mobility of intragranular bubbles.

The influence of the interface kinetics on bubble diffusivity by
volume diffusion, evaporation/condensation and surface diffusion
mechanisms was additionally studied. A special attention was paid
to the effect of the internal gas pressure in restricting small bub-
bles movement. For this case a new expression for the non-linear
adsorption isotherm for gas atoms was derived. This allowed
explanation of further suppression (in comparison with Mikhlin’s
model for the bubble migration mechanism by surface diffusion)
of the diffusivity of small intragranular bubbles.

The standard Mikhlin’s model was critically analysed and mod-
ified, using the non-linear adsorption isotherm.

The improved models for various mechanisms of the bubble dif-
fusivity were implemented in the MFPR code and applied to anal-
ysis of Baker’s, Cornell’s and Gulden’s measurements of small
nanometre bubbles mobility. New unknown model parameters
characterising the interface kinetic processes were determined by
fitting the MFPR calculations to the experimental data.
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Appendix A

Let us consider behaviour of atoms and point defects in crystal
under hydrostatic stress field riið~rÞ ¼ �Pð~rÞ. In the case of a homo-
geneous field, P = P0 = const., the equilibrium chemical potentials
of point defects can be calculated as

lv;i ¼ lv;i0 � xv;iP0; ðA:1Þ

where xv,i = ±cv,ix is the increase of the crystal volume when one
defect is introduced in the crystal bulk by relocation of an atom
to (from) the crystal surface; cv,i = jxv,ij/x normally 61. Indeed, in
this case to attain the equilibrium state the reversible work con-
nected with the crystal volume increase under the external stress,
�xv,i P0, has to be compensated by the chemical potential of the
newly created point defect, lv,i.

It is worthwhile to note that a similar consideration of the equi-
librium boundary conditions on the bubble surface will modify the
usual Eqs. (2) and (3) (obtained under simplified assumption
cv � ci � 1) by substitution of jxv,ij instead of x in the right hand
side of Eqs. (2) and (3), respectively (or, equivalently, by multipli-
cation of x by cv,i).

In the case of spatially non-homogeneous field with a constant
gradient ~rP ¼ const., riið~rÞ ¼ �Pð~rÞ ¼ �P0 þ~r �~rP, under steady
state conditions the chemical potentials of point defects obey the
Laplace-type equation:

Dlv;i ¼ 0; ðA:2Þ

which has the solution, generalizing Eq. (A.1):

lv;i ¼ lv;i0 � xv;iPðrÞ: ðA:3Þ

Therefore, the point defects diffusion fluxes are calculated as

~Iv;i ¼ �Mv;i
~rlv;i ¼ Mv;ixv;i

~rP ¼ 
Mv;ijxv;ij~rP

¼ 

Dv;icv;icv;i

kT
~rP; ðA:4Þ

where Dv;i ¼ Mv;ixakT=cv;i is the diffusivity of vacancies
(interstitials).

Assuming that the pressure gradient is small, the Gibbs poten-
tial of the crystal in a local volume V (with a number of atoms N)
can be decomposed at fixed temperature as

UðP; TÞ � UðP0; TÞ þ ðP � P0ÞV ;

taking into consideration that dU = �SdT + VdP, where S is the
entropy.

In this case, for the atomic chemical potential one obtains:

la ¼
oUðP; TÞ

oN
� @UðP0; TÞ

oN
þ ðP � P0Þ

oV
oN
¼ la0 þ ðP � P0Þx; ðA:5Þ

thus, the atomic flux is calculated as:

~Ia ¼ �Ma~rla ¼ �Max~rP; ðA:6Þ

or, in accordance with the Einstein equation for the self-diffusion,
Ma = Da/xkT:

~Ia ¼ �
Da

kT
~rP: ðA:7Þ

On the other hand,

~Ia ¼ �~Iv þ~Ii; ðA:8Þ

therefore, substituting Eqs. (A.4) and (A.7) in Eq. (A.8), one obtains:

Da ¼ cvDvcv þ ciDici: ðA:9Þ
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In the approximation cv � ci � 1 one obtains:

Da � Dvcv þ Dici: ðA:10Þ
Appendix B

In this Appendix self-consistent consideration of the bulk self-
diffusion in the crystal matrix and the two-phase interface kinetics
at the bubble surface is presented. For simplicity, only one type of
defects is considered (generalization to two types is straightfor-
ward following consideration in Section 2).

The vacancy chemical potential lvð~rÞ in the matrix obeys the La-
place-type equation:

Dlv ¼ 0: ðB:1Þ

Under conditions of thermodynamic equilibrium on the bubble sur-
face, the chemical potential obeys the boundary conditions on this
surface:

lðeqÞ
v ¼ lv0 þ cvxrnn; ðB:2Þ

where rnn are the normal stresses at the bubble surface (~n is the
normal vector), x is the atomic volume of uranium atoms, lv0 is
the equilibrium vacancy concentration in the absence of stresses,
cv is the vacancy dilation factor (see Appendix A).

The stresses induced on the bubble surface by an external force
~F exerted on the bubble in the isotropic crystal take the form [10]

rrr ¼ �
3F

4pR2
b

cos h; rrh ¼ 0; rru ¼ 0; ðr ¼ RbÞ; ðB:3Þ

where h is the angle between the vectors ~n and ~F.
Solution of Eq. (B.1) with the equilibrium boundary conditions

Eq. (B.2) and Eq. (B.3) has the form:

lðeqÞ
v ð~rÞ ¼ lv0 �

3cvx
4p

F
*

�~r
r3 ; ðr ¼ RbÞ: ðB:4Þ

In the absence of the thermodynamic equilibrium at the bubble sur-
face when the interface kinetics becomes essential, the boundary
conditions on the bubble surface can be searched in the form:

lðsÞv ð~rÞ ¼ lv0 � a
3cvx

4p
F
*

�~r
r3 ; ðr ¼ RbÞ; ðB:5Þ

where a is an unknown parameter.
In this (non-equilibrium) case the diffusion flux of uranium

atoms to the bubble surface is

~Idif ¼
cvDvcv

xkT
~rlv ¼ �a

3Du

4pkT
F
*

R3
b

�
3 F

*

�~Rb

� �
~Rb

R5
b

0BB@
1CCA; ðB:6Þ
whereas the interface kinetic flux is

~Iint ¼ K1ðlðsÞv � lðeqÞ
v Þ ¼ K1ð1� aÞ3x

4p
ðF
*

�~RbÞ
R3

b

: ðB:7Þ

Equating the normal components of the two fluxes~Idif �~n ¼~Iint �~n,
one obtains:

a ¼ K1xRb

K1xRb þ 2ðDu=kTÞ : ðB:8Þ

The bubble velocity, which obeys the relationship:

~v �~n ¼ x~Idif �~n; ðB:9Þ

can be calculated from Eq. (B.9) after substitution of Eq. (B.8) in Eq.
(B.6):

~v ¼ 3~Fx

4pR3
b

K1xRb � ð2Du=kTÞ
K1xRb þ ð2Du=kTÞ : ðB:10Þ

Therefore, for the bubble mobility that obeys the relationship
~v ¼ ub

~F, one obtains:

ub ¼
3x

4pR3
b

K1xRb � ð2Du=kTÞ
K1xRb þ ð2Du=kTÞ : ðB:11Þ

Finally, for the bubble diffusivity which obeys the Einstein’s rela-
tionship Db = kTub, one obtains:

DðvolÞ
b ¼ 3x

4pR3
b

K1xRb � 2Du

K1xRb þ ð2Du=kTÞ : ðB:12Þ
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